This is the most basic and most widely used type of tapered roller bearing. It consists of two main separable parts: the cone (inner ring) assembly and the cup (outer ring). It is typically mounted in opposing pairs on a shaft.

Specifications | Dimensions | Abutment and Fillet Dimensions | Basic Load Ratings | Factors
Specifications

Series	HM89400
Cone Part Number	HM 89449
Cup Part Number	HM 89410
Design Units	Imperial
	0.6 Kg
Bearing Weight	1.400 lb
	Stamped Steel
Cage Type	

Dimensions
d-Bore
36.513 mm
1.4375 in

D - Cup Outer Diameter

B - Cone Width

C - Cup Width

T-Bearing Width
76.2 mm 3 in
28.575 mm
1.1250 in
23.020 mm
0.9063 in
29.370 mm
1.1563 in

Abutment and Fillet Dimensions

R - Cone Backface "To Clear"	3.560 mm
Radius 1	0.14 in
r - Cup Backface "To Clear"	3.3 mm
Radius 2	0.130 in
da - Cone Frontface Backing	44.45 mm
Diameter	1.75 in
db - Cone Backface Backing	56.90 mm
Diameter	2.24 in
Da - Cup Frontface Backing	73.90 mm
Diameter	2.91 in
Db - Cup Backface Backing	61.98 mm
Diameter	2.44 in
Ab - Cage-Cone Frontface	2 mm
Clearance	0.08 in
Aa - Cage-Cone Backface	1.5 mm
Clearance	0.06 in
a - Effective Center Location ${ }^{3}$	-5.6 mm

C90-Dynamic Radial Rating (90 million revolutions) ${ }^{4}$	$\begin{aligned} & 6440 \mathrm{lbf} \\ & 28600 \mathrm{~N} \end{aligned}$
C1 - Dynamic Radial Rating (1 million revolutions) ${ }^{5}$	$\begin{aligned} & 24800 \mathrm{lbf} \\ & 110000 \mathrm{~N} \end{aligned}$
C0-Static Radial Rating	$\begin{aligned} & 26700 \mathrm{lbf} \\ & 119000 \mathrm{~N} \end{aligned}$
$\mathrm{C}_{\mathrm{a} 90}$-Dynamic Thrust Rating (90 million revolutions) ${ }^{6}$	$\begin{aligned} & 6020 \mathrm{lbf} \\ & 26800 \mathrm{~N} \end{aligned}$

Factors
K- Factor ${ }^{7} \quad 1.07$
e- ISO Factor ${ }^{8} \quad 0.55$
Y - ISO Factor ${ }^{9} 1.1$
G1 - Heat Generation Factor
(Roller-Raceway) 28.9

G2 - Heat Generation Factor
(Rib-Roller End)

Cg - Geometry Factor ${ }^{10}$
${ }^{1}$ These maximum fillet radii will be cleared by the bearing corners.
2 These maximum fillet radii will be cleared by the bearing corners.
${ }^{3}$ Negative value indicates effective center inside cone backface.
${ }^{4}$ Based on 90×10^{6} revolutions L_{10} life, for The Timken Company life calculation method. C_{90} and $C_{a 90}$ are radial and thrust values.
${ }^{5}$ Based on 1×10^{6} revolutions L_{10} life, for the ISO life calculation method.
${ }^{6}$ Based on 90×10^{6} revolutions L_{10} life, for The Timken Company life calculation method. C_{90} and $C_{a 90}$ are radial and thrust values for a single-row, $\mathrm{C}_{90(2)}$ is the two-row radial value.
7 These factors apply for both inch and metric calculations. Consult your Timken representative for instruction on use.
${ }^{8}$ These factors apply for both inch and metric calculations. Consult your Timken representative for instruction on use.
${ }^{9}$ These factors apply for both inch and metric calculations. Consult your Timken representative for instruction on use.

10 Geometry constant for Lubrication Life Adjustment Factor a3l.

IMPERIAL UNITS

